Learning to Draw Dynamic Agent Goals with Generative Adversarial Networks

نویسندگان

  • Shariq Iqbal
  • John Pearson
چکیده

We address the problem of designing artificial agents capable of reproducing human behavior in a competitive game involving dynamic control. Given data consisting of multiple realizations of inputs generated by pairs of interacting players, we model each agent’s actions as governed by a time-varying latent goal state coupled to a control model. These goals, in turn, are described as stochastic processes evolving according to player-specific value functions depending on the current state of the game. We model these value functions using generative adversarial networks (GANs) and show that our GAN-based approach succeeds in producing sample gameplay that captures the rich dynamics of human agents. The latent goal dynamics inferred and generated by our model has applications to fields like neuroscience and animal behavior, where the underlying value functions themselves are of theoretical interest.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvement of generative adversarial networks for automatic text-to-image generation

This research is related to the use of deep learning tools and image processing technology in the automatic generation of images from text. Previous researches have used one sentence to produce images. In this research, a memory-based hierarchical model is presented that uses three different descriptions that are presented in the form of sentences to produce and improve the image. The proposed ...

متن کامل

Automatic Colorization of Grayscale Images Using Generative Adversarial Networks

Automatic colorization of gray scale images poses a unique challenge in Information Retrieval. The goal of this field is to colorize images which have lost some color channels (such as the RGB channels or the AB channels in the LAB color space) while only having the brightness channel available, which is usually the case in a vast array of old photos and portraits. Having the ability to coloriz...

متن کامل

Adversarial Advantage Actor-Critic Model for Task-Completion Dialogue Policy Learning

This paper presents a new method — adversarial advantage actor-critic (Adversarial A2C), which significantly improves the efficiency of dialogue policy learning in taskcompletion dialogue systems. Inspired by generative adversarial networks (GAN), we train a discriminator to differentiate responses/actions generated by dialogue agents from responses/actions by experts. Then, we incorporate the ...

متن کامل

Connecting Generative Adversarial Networks and Actor-Critic Methods

Both generative adversarial networks (GAN) in unsupervised learning and actorcritic methods in reinforcement learning (RL) have gained a reputation for being difficult to optimize. Practitioners in both fields have amassed a large number of strategies to mitigate these instabilities and improve training. Here we show that GANs can be viewed as actor-critic methods in an environment where the ac...

متن کامل

Auto-painter: Cartoon Image Generation from Sketch by Using Conditional Generative Adversarial Networks

Recently, realistic image generation using deep neural networks has become a hot topic in machine learning and computer vision. Images can be generated at the pixel level by learning from a large collection of images. Learning to generate colorful cartoon images from black-and-white sketches is not only an interesting research problem, but also a potential application in digital entertainment. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1702.07319  شماره 

صفحات  -

تاریخ انتشار 2017